
PRINCIPLES OF OPERATING SYSTEMS

LECTURE- 16
Virtual Memory- Demand paging

Introduction

Virtual memory – separation of user logical memory from
physical memory.

 Only part of the program needs to be in memory for
execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several
processes

 Allows for more efficient process creation

Introduction

 Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

Virtual Memory That is Larger Than Physical
Memory

Virtual-address Space

Shared Library Using Virtual Memory

Demand Paging

 Bring a page into memory only when it is needed
 Less I/O needed
 Less memory needed
 Faster response
 More users

Demand Paging

 Page is needed reference to it
 invalid reference abort
 not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory
unless page will be needed
 Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk
Space

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is

associated
(v in-memory, i not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 During address translation, if valid–invalid bit in
page table entry is i page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

i

Page Table When Some Pages Are Not in Main
Memory

Page Fault

If there is a reference to a page, and the referenced page
is not in memory, but the page is a valid page in the
process’s virtual memory, then it is a page fault.

First reference to that page will trap to operating system
page fault.

Page Fault

1. Operating system looks at another table (may be
captured in PCB) to decide:
 Invalid reference abort
 Just not in memory

2. If (there is a free frame)
1. Get empty frame

3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

Steps in Handling a Page Fault

Performance of Demand Paging

 Page Fault Rate 0 p 1.0
 if p = 0 no page faults
 if p = 1 every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p x (1. page fault overhead
+ 2. swap page out
+ 3. swap page in
+ 4. restart overhead)

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

